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Proximity among protected area 
networks promotes functional 
connectivity for wintering 
waterfowl
Nicholas M. Masto 1,2,6*, Allison C. Keever 1,6, Cory J. Highway 1, Abigail G. Blake‑Bradshaw 1, 
Jamie C. Feddersen 3, Heath M. Hagy 4,5* & Bradley S. Cohen 1

The equilibrium theorem provided a fundamental framework for understanding species’ distributions 
and movement in fragmented ecosystems. Wetland‑dependent avian species are model organisms 
to test insular predictions within protected area networks because their mobility allows surveillance 
of isolated patches without landscape barriers. We hypothesized size and isolation would influence 
functional connectivity of sanctuaries by GPS‑marked wintering mallards (Anas platyrhynchos) within 
a mesocosm protected sanctuary area network. We evaluated functional connectivity and sanctuary 
use, measured by movements between sanctuaries, using a multistate modeling framework. 
Proximity drove connectivity, underscoring that patch isolation—not size—influenced connectivity, 
even for an avian species with no ascertainable landscape resistance or barriers. We also found that 
sanctuary use increased overwintering survival by reducing harvest mortality. Our test of equilibrium 
theory predictions demonstrated that isolation of protected sanctuary areas supersedes their size in 
determining functional connectivity for mallards and access to these areas may have direct fitness 
consequences. Our findings could refine land acquisition, restoration, and management practices with 
equal or greater emphasis on adjacency in protected area network design, especially for wetland‑
dependent migratory gamebirds.

Keywords Anas platyrhynchos, GPS telemetry, Functional connectivity, Island biogeography, Multistate 
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The theory of island biogeography laid the foundation for critical insights across the fields of ecology, evolu-
tion, and conservation  biology1–3. In particular, the equilibrium model offered the first conceptual framework 
describing connectivity between discrete patches where bi-directional movement jointly depended on patch 
size and  isolation4,5. The model predicted increased colonization of larger and closer patches and emigration 
from smaller isolated  patches6,7. A key insight was its application to non-island environments where protected 
areas (i.e., “reserves”, “refuges”, “sanctuaries”) become functional islands as land use change fragmented natural 
 ecosystems8–11. Conservation practitioners embraced these general principles for optimal design of protected 
area  networks12.

The influential single large versus several small (SLOSS) debate posited that a single large protected area 
promoted greatest species abundance, richness, and immigration than several smaller  reserves13–17 (i.e., SL > SS). 
While global protected areas effectively conserve species diversity, abundance, and  demography18–20, the relative 
importance of size and connectivity are context-dependent. Conservation planners recognize influential factors 
of protected areas such as their authorized purposes (e.g., endangered species recovery vs. biodiversity goals), 
target organism(s) and traits (e.g., dispersal ability), and the surrounding landscape  matrix2,21–24. For instance, 
connectivity becomes more vital for recovery of endangered species or those with limited dispersal  ability25,26. 
Thus, protected area networks require case-specific evaluations based on the species and ecosystems they are 
designed to  serve27–29.
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Despite the contextual nature of protected area network design, large contiguous habitat is nearly always 
prioritized for protection over smaller  areas30,31, implying lower conservation value of small patches, which may 
undermine conservation or budgetary  objectives32,33. For example, megafauna require large protected areas but 
smaller connected patches may be as effective as large ones if they facilitate movement and dispersal (e.g., habi-
tat corridors)22,34. Likewise, conservation values of large marine protected areas are well-established (e.g., less 
sensitive to environmental perturbations)35 but smaller marine protected area networks (i.e., stepping stones) 
may be equally effective depending on site characteristics, target taxonomic groups, and limiting consumptive 
use and other human  disturbance36,37. Smaller protected areas can also harbor substantial biodiversity, enhance 
landscape connectivity, are more cost-effective to acquire and maintain, and likely complement larger protected 
 areas38. Therefore, their potential conservation value should not be dismissed and may be especially important 
in the Anthropocene as natural ecosystems are increasingly fragmented and fiscal resources  limited32,33,38.

Wetland-dependent birds are notable models to evaluate protected area connectivity under the equilibrium 
framework because their mobility allows individuals to assess isolated patches without landscape barriers or 
 resistance39–41. Furthermore, wetland-dependent birds rely on severely threatened and fragmented ecosystems 
throughout their life-cycle42. Protected area wetlands provide resting and foraging areas during non-breeding 
 seasons18,43, migratory stopover and refueling  sites43–47, and nesting and brood-rearing  habitat48,49. Ultimately, 
these sites are stepping stones that fulfil annual cycle requirements, and their connectivity is a prerequisite to 
the vitality and long-term viability of wetland-dependent migratory bird  populations50–52. Indeed, evaluations 
have emphasized a need for a greater number of integrated wetlands (i.e., complexes or networks) rather than 
larger contiguous wetland habitats to connect wetland-dependent bird movements at local and landscape scales 
and during different stages of their annual life  cycle43–48.

Historically, global protected areas were established as sanctuaries (i.e., prohibited or very limited human 
access) for threatened or iconic species, landscapes, and seascapes to restore declining wildlife populations or 
promote  biodiversity53,54. Protected areas are increasing, but public support hinges on their utility to people 
and thus broader objectives are required to satisfy growing demands of increasingly diverse  stakeholders55,56. 
For example, the U.S. National Wildlife Refuge (NWR) System is the premiere example of a protected area 
network for wildlife  conservation57. In its infancy, the NWR System’s mission was to protect land as inviolate 
sanctuary for at-risk and iconic  wildlife53 (e.g., brown pelican [Pelicanus occidentalis] and bald eagle [Haliaeetus 
leucocephalus]). However, NWRs now have unique designations (e.g., sanctuary, waterfowl production areas, 
human recreation) and subsequently, their authorized purposes change to meet public  demand57,58. One such 
directive for midcontinental NWR networks is to provide spatial sanctuary, free from hunting and other human 
disturbance, for migrating and wintering waterfowl with goals to: (1) provide rest areas and promulgate foraging 
resource requirements that promote population persistence; (2) serve as stepping stones that facilitate migratory 
and local wintering movements and connectivity; and (3) influence local–regional distributions of  waterfowl59–61. 
State agencies also establish smaller waterfowl sanctuaries to enhance disturbance-free wetland connectivity and 
waterfowl movement within sanctuary networks with implicit assumptions that protected sanctuary complexes 
enhance local waterfowl harvest opportunities and sustain abundant waterfowl populations regionally throughout 
autumn and  winter60–62.

Evaluating the effectiveness of protected area networks in meeting conservation objectives is challeng-
ing, especially for highly mobile species that occupy large geographic ranges and dynamic spatiotemporal 
 distributions63,64. Nevertheless, periodic and critical assessments are needed for effective management, restora-
tion, or prioritization of new areas within or beyond established  networks18,43,50,65. Traditional evaluations of 
protected areas that span large spatial extents have recorded wildlife vital rates (e.g., abundance) or diversity 
 indices18,66,67, but they are historically limited by temporal frequency and therefore, an inability to directly meas-
ure connectivity among protected areas (but see68). Emerging tracking technology allows practitioners to monitor 
movements among protected sanctuary areas directly, while removing spatial and temporal biases associated 
with resighting marked  birds68, thereby assessing functional connectivity and influential site characteristics (i.e., 
size, isolation) at biologically relevant spatial  scales69–71.

Our aim was to evaluate functional connectivity within a protected sanctuary network by wintering mallards 
(Anas platyrhynchos) by modeling daily movement transition probabilities to (i.e., immigration) and from (i.e., 
emigration) sanctuary “nodes”72,73. Wintering mallards serve as an informative model species to test equilibrium 
predictions because their mobility allows aerial assessment of habitat patches with no landscape  resistance74. Yet, 
they rely on protected wetlands as suitable “islands” because of an otherwise inhospitable landscape matrix (i.e. 
intensive hunting). We hypothesized sanctuary size and isolation (i.e., distances) would influence movement 
transition probabilities among sanctuary  nodes6. We predicted larger sanctuaries were local source populations 
and thus immigration transitions to larger sanctuaries were more likely, emigration transitions from larger sanc-
tuaries were less likely, and the opposite immigration-emigration relationships for smaller sanctuaries. Likewise, 
we predicted mallards were more likely to transition to sanctuaries closer to one another compared to more 
distant sanctuaries. We also evaluated sanctuary use by mallards relative to capture-year and years after capture 
to ensure inferences were robust against transmitter marking biases (i.e., different sanctuary use behaviors in the 
first year compared to following winters). We predicted similar rates of sanctuary use between capture-year and 
return mallards and thus no or minimal marking biases. Last, we estimated overwintering survival for mallards 
that had access and used sanctuary compared to those that did not following capture. We hypothesized use of 
and access to protected sanctuary areas may confer fitness consequences; therefore, we predicted overwintering 
survival would be greater for mallards that used sanctuary because those that did not would experience greater 
harvest mortality. Our findings refine consequences of the equilibrium model, illustrating application and geo-
graphic generalizability for local, regional, and international sanctuary network design that promotes functional 
connectivity for a hunted gamebird during winter.
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Results
We removed 3 mallards that migrated through but did not stay within our sanctuary network. We tracked 421 
mallards (41% females, 24% juveniles) from 2019 to 2023, and 22 individuals had 2 or more winter seasons 
within the study region. Sixty-nine percent of mallards used 1 sanctuary node during winter, 19% used 2 nodes, 
and 12% used 3 or more (maximum = 8).

The probability of daily sanctuary transitions decreased as distance increased (β = − 0.11; 90% CRI =  − 0.12 
to − 0.10; Table 1). For every 10 km of spatial separation, mallards were 3.06 (90% CRI = 2.84–3.28; Fig. 1a) times 
less likely to transition from one sanctuary to another. Increased size of the “departure” (i.e., emigration) and 
“arrival” (i.e., immigration) sanctuaries increased the probability of sanctuary transitions (βs = 0.019 and 0.033; 
90% CRIs = 0.009–0.032 and 0.021–0.045, respectively; Table 1); however, the magnitude of these effects were 
small (Fig. 1c,d). For example, given 10  km2 (i.e., x size) increase in emigration sanctuary, mallards were 1.22 
(90% CRI = 1.09–1.38) times more likely to transition from one sanctuary to another ( ψ range = 0.0002–0.006; 
Fig. 1c). Adults (β = 0.44; 90% CRI = 0.19–0.72) and males (β = 0.61; 90% CRI = 0.40 – 0.81) had greater transition 
probabilities than juveniles and females, respectively (Table 1). Adults were 1.56 (90% CRI = 1.21–2.05) times 
more likely to transition than juveniles, and males were 1.84 (90% CRI = 1.49–2.25) times more likely to transi-
tion than females (Fig. 1b). Probability of an adult male mallard making one or more transitions across the entire 
120-day study period was 46.1% (90% CRI = 42.1–50.5%) when sanctuaries were 21.1 km apart ( x distance − 1 
SD), 3.4% (90% CRI = 2.9–4.5%) when sanctuaries were 46.9 km apart ( x ), and 0.2% (90% CRI = 0.1–0.3%) when 
sanctuaries were 72.7 km apart ( x + 1 SD).

Daily transition probabilities between sanctuary nodes was ≤ 6% (Fig. 1; Table S1). The greatest probability of 
daily sanctuary transitions was between Reelfoot Lake NWR north to south and south to north units for adult 
males ( ψ = 0.057 and 0.056; 90% CRIs = 0.049–0.065 and 0.048–0.064, respectively; Fig. 2). Adult male daily 
transitions were relatively high from Phillipy Refuge to Reelfoot Lake NWR north and south units ( ψ = 0.044 and 
0.036; 90% CRIs = 0.038–0.051 and 0.032–0.041, respectively) and Black Bayou Refuge to Reelfoot Lake NWR 
north and south units ( ψ = 0.033 and 0.044; 90% CRIs = 0.029–0.037 and 0.039–0.050, respectively). In fact, most 
emigration-immigration combinations among sanctuaries with the greatest daily transition probabilities were 
within the “Reelfoot Wetlands Complex” because of the proximity of these sanctuaries to one another (Fig. 2). 
The “Upper Obion Wetland Complex”, which included Bean Switch Refuge, Maness Swamp Refuge, and Hop-
In Refuge, were also relatively well connected (Fig. 2). Among these, the greatest transition probabilities were 
from Hop-In Refuge to Maness Swamp Refuge ( ψ = 0.021; 90% CRI = 0.019–0.024), from Maness to Hop-In ( ψ 
= 0.020; 90% CRI = 0.018–0.023), from Bean Switch Refuge to Maness ( ψ = 0.016; 90% CRI = 0.014–0.018) and 
from Maness to Bean Switch ( ψ = 0.015; 90% CRI = 0.013–0.017). Although, farther away from the “Reelfoot 
Wetlands Complex”, Lake Isom NWR was weakly connected with greatest connectivity from Lake Isom NWR 
to Reelfoot Lake NWR south unit ( ψ = 0.021; 90% CRI = 0.019–0.023), to Black Bayou Refuge ( ψ = 0.012; 90% 
CRI = 0.011–0.013), and to Reelfoot Lake NWR north ( ψ = 0.010; 90% CRI = 0.008–0.013). In other words, Lake 
Isom NWR was an apparent source for the “Reelfoot Wetlands Complex”. All other daily sanctuary transition 
probabilities were < 1% (Table S1; Fig. 2).

Mallards returning to the study region did not differ in number of sanctuaries used compared to those 
captured during winter (β = 0.05; SE = 0.28). Likewise, arrival or capture month did not affect sanctuary use 
by mallards (December: β = − 0.16; SE = 0.003, January: β = − 0.33; SE = 0.21, February: β = − 0.05; SE = 0.34). 
However, the number of sanctuaries used increased with increasing time spent in the study region (β = 0.015; 
SE = 0.003). Specifically, mallards used 1.59 (90% CI 1.36–1.85) times as many sanctuaries for every 30 days in 
the region (Fig. 3).

Mallards that did not use sanctuary nodes following capture (11% or 45 individuals) had reduced overwin-
tering survival compared to individuals that established winter ranges near and thus, had access to sanctuaries 
(Fig. S2). Specifically, individuals that used sanctuary had 3.06 (95% CI 1.77–5.31) times reduced hazard of 
death compared to individuals that never used sanctuary following capture. For 30 days within the sanctuary 
network, survival was 0.91 (95% CI 0.88–0.94) for mallards that had access and used sanctuary and 0.72 (95% 
CI 0.59–0.87) for mallards that did not use sanctuary. For 60 days, survival was 0.83 (95% CI 0.77–0.87) and 0.55 

Table 1.  Parameter estimates on the logit scale (β) and associated 95% credible intervals from the multistate 
model evaluating daily sanctuary transition probabilities for system-specific (i.e., specific sanctuaries or 
the intercept), individual characteristic variables including age and sex, and island biogeography covariates 
including distance between sanctuaries and their sizes, including the departure or “emigration” sanctuary the 
individual left and the arrival or “immigration” sanctuary the individual transitioned to.

Hypothesis Variable β

90% credible intervals

Lower Upper

System-specific Intercept (sanctuary) − 4.48 − 4.88 − 4.18

Individual characteristics
Age 0.44 0.19 0.72

Sex 0.61 0.40 0.81

Island biogeography

Distance − 0.11 − 0.12 − 0.10

Size (emigration) 0.02 0.01 0.03

Size (immigration) 0.03 0.02 0.05
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(95% CI 0.39–0.77) for individuals that used and did not use sanctuary, respectively (Supplementary Context, 
Methods, and Results 2; Fig. S2).

Discussion
We evaluated functional connectivity of a highly mobile gamebird species within a mesocosm protected area 
network to refine applications of equilibrium theory. Proximity between sanctuary nodes promoted inter-patch 
movements more than area size, even for an avian species that is, theoretically, unimpeded by the  matrix2. Our 
findings align with previous research demonstrating isolation overrides patch size for connectivity outcomes, 
including for flying  taxa27,75–78. This highlights the equilibrium theory’s assumption that landscape matrices 
impose dispersal costs, which may apply differentially to highly vagile or hunted  species79. For such mobile organ-
isms, structural connectivity, facilitated by adjacent protected areas, can enhance functional connectivity without 
sole reliance on intervening habitat patches of lesser  quality80,81. Consequently, we suggest maximizing adjacency 
should be as much a focus as size for protected area networks aimed at increasing connectivity, especially for 
overwintering gamebirds and other wildlife that can transit above a hostile matrix to more suitable patches.

Figure 1.  The daily transition probabilities ( ψ ) from one waterfowl sanctuary to another by a wintering 
mallard (Anas platyrhynchos) captured or arriving in the west Tennessee and surrounding sanctuary complexes 
(November through February 2019–2023) relative to distance between sanctuaries (a), individual characteristics 
including female or male (green and orange, respectively) and age (juvenile or adult; b), and sanctuary sizes 
including the size of the sanctuary an individual left (emigration; c) and the size the individual transitioned to 
(immigration; d). Transition probabilities are associated with 68%, 90%, and 95% credible intervals for (a), (c), 
and (d) (dark to light gray) and 68% and 90% credible intervals for (b) (thick and skinny line, respectively). 
Predictions are generated from posterior distributions with all other values held constant at their mean value. 
Predictions for (a), (c), and (d) are for juvenile males because these were categorical indicator variables. Note 
different y-axes for visual aesthetics; despite increases or differences visually, distance between sanctuary nodes 
(a) was the only biologically meaningful effect. All Figures were produced in R version 4.3.3. https:// www.r- 
proje ct. org/.

https://www.r-project.org/
https://www.r-project.org/
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Measuring connectivity outcomes remains challenging and relies on indirect measures of genetic diversity, 
occupancy, or  abundance81–83. However, tracking individual movements provides a direct evaluation of network 
connectivity and possible  barriers71,84,85. Here, we used GPS tracks of mallards to estimate functional connectiv-
ity of protected sanctuary areas which revealed that individuals rarely transitioned between protected sanctuary 
nodes, despite the ability to fly above and avoid hunting risk when relocating (cf.86), thereby implying some 
unknown costs. Critical to island biogeography is the assumption that the landscape matrix between suitable 
patches is  inhospitable7,11. While some wetlands beyond sanctuary borders may provide temporary  refugia87,88, 
our most connected area was also the most hunted (Table S1; Fig. S1). Instead, resource tracking and abundance 
theories predict reduced movement when resources are  plentiful89–92. Mallards likely foraged outside sanctuaries 
nocturnally when these patches were suitable and returned to sanctuary nodes  diurnally93–96.

Few and proximity-biased transitions could be interpreted as energy conservation decision-making97–99. 
Indeed, waterfowl and other taxa minimize travel distances to foraging patches during winter unless payoffs at 
distant patches outweigh travel  costs95,100–104. However, food resources surrounding sanctuary nodes remained 
throughout winter precluding any need to conserve  energy105,106. Instead, few sanctuary transitions—predomi-
nantly to closer nodes—suggests adequate food resources within and around nodes, that translated into a single 
sanctuary being suitable the entire  winter96,107. A more likely cost of transitioning between sanctuaries is the 
immediate mortality risk by  hunters18,60,108 (Fig. S2); that is, chronic hunting likely impeded connectivity. Mal-
lards returning to the same sanctuary indicates a cognitive map of locally suitable  patches109–111. Waterfowl in our 
region have only a short period to develop search images (i.e., pre-hunting season from arrival to ~ 5 December) 
and cognitive maps decay with time, in turn promoting shorter movement distances to areas frequently visited, 

Figure 2.  Predicted functional connectivity of mallards (Anas platyrhynchos) represented as daily sanctuary 
transition probabilities (p) among sanctuary nodes within the west Tennessee and surrounding sanctuary 
network of Arkansas, Kentucky, and Missouri. Individual mallards were captured and monitored with 
GPS transmitters from November through February 2019–2023. Sanctuary nodes included 4 National 
Wildlife Refuges: Big Lake National Wildlife Refuge (BLNWR) in Arkansas, Reelfoot Lake NWR north unit 
(RLNWR_N) in Kentucky and Tennessee, and Reelfoot Lake NWR south unit (RLNWR_S), Lake Isom 
NWR (LINWR), and Chickasaw NWRs in Tennessee. Additional smaller sanctuary nodes included state-
owned waterfowl sanctuaries: Lake Lauderdale (LL), Horns Bluff (HB), White Lake (WL), Bean Switch (BS), 
Maness Swamp (M), Hop-in (HI), Black Bayou (BB), and Phillipy Waterfowl Refuges (P). Greatest functional 
connectivity was clearly within the Reelfoot Lake sanctuary complexes that included Black Bayou, Phillipy, 
and Reelfoot NWR north and south units. State sanctuary nodes in the upper Obion River Complex including 
Hop-in, Bean Switch, and Maness Swamp Waterfowl Refuges also were more connected nodes illustrating 
distance, not size, as a primary driver of functional connectivity for wintering mallards. Figure was produced in 
R version 4.3.3. https:// www.r- proje ct. org/.

https://www.r-project.org/
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especially given diurnal movement constraints during hunting  season96,100,109. In other words, transitions to dis-
tant and unvisited sanctuaries would require exploratory behaviors that may increase hunter  encounters108,112,113. 
In concert, forage availability and abundance, spatial memory, and the negative fitness consequences for explora-
tory behavior (Supplementary Context, Methods, & Results) may explain why sanctuary proximity and not size 
promoted functional connectivity.

Authorized purposes for waterfowl spatial sanctuaries vary regionally, nationally, and  internationally54,58. 
Within our region, state-owned sanctuaries are intended to bolster or maintain local waterfowl abundance and 
facilitate movements among sanctuaries to improve waterfowl hunting and hunter  satisfaction60,114. National 
Wildlife Refuges in the region serve similar purposes but are six times the size of state-owned sanctuaries; 
therefore, they are better equipped to support biodiversity, population persistence, and host large abundances 
of waterfowl as local “source” populations to surrounding  areas53. However, our data indicate larger NWRs do 
not necessarily serve as local source populations that facilitate movement of mallards across our region, but we 
suggest they could if they were better connected to smaller state-owned sanctuary nodes within the network. 
Therefore, state conservation agencies that aim to increase waterfowl movements and connectivity should con-
sider acquiring or leasing land that serves as stepping-stone sanctuaries to connect larger existing nodes, such as 
 NWRs115,116. A similar strategy was implemented in Louisiana, USA for northern pintails (A. acuta) with mixed 
 results117,118. Success or failure of attempts to improve wintering waterfowl connectivity undoubtedly depend on 
regional landscape matrices and sanctuary patch habitat  quality39. If food resources within and beyond sanctu-
ary boundaries are abundant and hunting mortality risk in the surrounding matrix is high, waterfowl should 
minimize exploration to the extent physiologically possible, especially to distant nodes, making stepping-stone 
sanctuaries even more critical to improve functional  connectivity102,107,115. Additionally, smaller connecting 
sanctuaries must be disturbance-free87,119. Hunting and other human disturbances within small sanctuaries 
would likely negate any positive connectivity  benefits37,59,115.

Private lands are crucial to wildlife conservation delivery  worldwide120–122 and can influence waterfowl 
resource selection and movement when protected  legally18,43,123. Protected private lands provide critical habitat 
and potential connectivity benefits among sanctuaries; however, single ownership parcels are often small and 
landowners typically recreate and disturb these areas, which likely limits their conservation value as stepping-
stone sanctuaries. Private land cooperative partnerships may resolve this scalar problem as an effective mecha-
nism for connecting waterfowl habitat while simultaneously improving recreational  opportunities124. Voluntary 

Figure 3.  Predicted number of waterfowl sanctuary nodes used by wintering mallards (Anas platyrhynchos) 
within the west Tennessee and surrounding wetland complex protected sanctuary network relative to the 
number of days in the study area. Plots are faceted by the month (columns) and by individuals using sanctuaries 
during the same winter they were captured and individuals returning to the study area (rows). Figure was 
produced in R version 4.3.3. https:// www.r- proje ct. org/.

https://www.r-project.org/
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partnerships among neighboring private landowners that collectively improve habitat quality and hunting expe-
riences have proven effective at promoting connectivity for terrestrial wildlife  species124–126, but seldom has 
this model been translated to wetlands and waterfowl management. We suggest a similar model of private land 
conservation  partnerships127 to enhance waterfowl movement, landscape connectivity, and recreational oppor-
tunities. Private landowners may consider wetland management cooperatives (WMCs) that regulate waterfowl 
hunting  temporally88 and establish spatial sanctuary shared among the WMCs. This waterfowl management 
strategy has potential to enhance recreational opportunities by reducing isolation effects among state- and 
federally-owned sanctuary nodes thereby improving connectivity within the network.

Our findings refine applications of the equilibrium theory predictions for highly mobile and hunted species 
using protected area networks. Proximity promoted connectivity more than area, even for an unfettered avian 
 migrant2. Empirical studies like ours rarely support single large over several small  reserves21,128,129, yet conserva-
tion planners prioritize larger reserves, which may undermine landscape structural connectivity and disincentiv-
ize  movement30,31. For locally wintering waterfowl, numerous small sanctuaries could act as stepping stones to 
connect large reserves harboring source  populations4,7,130. In other words, “mainlands” likely already exist (e.g., 
National Wildlife Refuges) within established sanctuary networks for locally wintering waterfowl but functional 
connectivity may not. Conservation planners should consider the landscape matrix and species’ movement tran-
sitions, distances, and range sizes when prioritizing areas for protection within pre-existing waterfowl or other 
protected area network  designs43,69,70,131. Publicly-funded programs to lease private lands as spatial sanctuaries or 
voluntary private land wetland management cooperatives (WMCs) that incorporate spatial sanctuary and limit 
hunting disturbance may enhance connectivity as stepping-stones within a sanctuary network. For example, if 
two 10  km2 (3.9  mi2) sanctuaries were separated by 20 km (12.4 mi), a male mallard only had a 46% chance to 
transition to or from each sanctuary across the entire 120-day winter period. Hypothetically, should another 10 
 km2 (3.9  mi2) stepping-stone sanctuary be established in the middle of the two existing sanctuaries (i.e., now 
10 km or 6.2 mi between nodes), mallard functional connectivity would increase threefold, with a 88% prob-
ability of transitioning during the winter period.

Researchers should evaluate effectiveness (and nuances) of such programs aimed at increasing connectivity 
across waterfowl species and other wildlife. Simulations to reveal “optimal” connectivity thresholds are a logical 
extension to our work that would provide conservation planners with decision support for targeted land ease-
ments or  acquisition132. Additionally, conservation agencies and their communication specialists may consider 
promoting potential benefits of private land cooperation to support wildlife connectivity in increasingly frag-
mented  landscapes120,133,134. Last, researchers should investigate a minimum sanctuary size to inform establish-
ment of stepping-stone sanctuary sizes, which we could not identify because our smallest sanctuary node (1.3 
 km2) was well  connected59,135. Spatially-explicit models of hunting and waterfowl response to “disturbed areas” 
may be useful to infer risk perception and subsequently, inform minimum sanctuary  sizes59,87,106 (Fig. S1).

Methods
Study system
Our study was conducted in west Tennessee and surrounding wetland complexes of west Kentucky, northeastern 
Arkansas, and southeastern Missouri, USA spanning 12,875  km2 during autumn and winter 2019–2023. Water-
fowl hunting is culturally and economically important to the  region136–138. Mallards are abundant and harvested 
intensively within and near the study region relative to the entire Mississippi Flyway of North  America139. 
Therefore, waterfowl sanctuaries provide needed spatially-defined and legally-designated safe and protected 
spaces for mallards and other waterfowl within an otherwise inhospitable landscape matrix (i.e., high hunter 
densities and activity across time and  space60,96,114 (Fig. S1). Another purpose of the region’s waterfowl sanctuar-
ies is to maintain or enhance local–regional waterfowl abundance and facilitate movement among them during 
the waterfowl hunting season; both are assumed to increase harvest opportunity and hunter  satisfaction60,140,141.

Within this important geography exist four U.S. NWRs and seven state-owned waterfowl sanctuaries that 
vary in size and distance from one another. These sanctuaries prohibit hunting and other human activities on 
or before 15 November through 31  March60,96. Intense hunting surrounding each waterfowl sanctuary in the 
region makes them functional “islands” among few other suitable habitats for waterfowl diurnally (Fig. S1)60,96. 
Therefore, the region’s sanctuary network is a model system or landscape  mesocosm142 to test sanctuary network 
connectivity relative to sanctuary sizes and isolation (i.e., SL > SS) because it meets several criteria: (1) suitable 
patches (i.e., sanctuaries) are rare but with  geographically143 and  biologically95,96 representative size-distance 
variation; (2) sanctuary patches are relatively homogenous spatially; and (3) the landscape matrix surround-
ing sanctuaries is “hostile” due to chronic anthropogenic hunting pressure (Fig. S1; Supplementary Context, 
Methods, Results 1)2,60,96.

Animal capture and monitoring
We captured male and female mallards from October through February 2019–2022 on 9 of 11 waterfowl sanc-
tuaries within our study region, thereby ensuring a spatially and temporally balanced sample. We banded ducks 
with U.S. Geological Survey aluminum tarsal bands and determined sex and age based on cloacal inversion, 
wing plumage, and bill  color144. We attached 20 g OrniTrack Global Positioning System-Global System for 
Mobile transmitters (GPS-GSM; Ornitela, UAB Švitrigailos, Vilnius, Lithuania) to birds weighing ≥ 1000 g to 
ensure deployment packages remained below 3% of recommended body weights for unbiased  monitoring145. 
We programmed GPS-GSM transmitters to record hourly locations throughout the study. For analyses, we 
treated first year captured ducks and return wintering ducks as independent sampling units. All animal capture, 
handling procedures, and experimental protocols were in accordance with Tennessee Technological University’s 
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Institutional Animal Care and Use Committee protocol #19-20-002, authorized under Federal Banding Permit 
#05796, and adhered to ARRIVE guidelines (https:// arriv eguid elines. org).

Spatial and individual covariates
We used the protected area database (PAD-US; U.S. Geological Survey (USGS) Gap Analysis Project (GAP) 2022) 
to acquire U.S. NWR and state waterfowl sanctuary boundaries from northwest Tennessee, western Kentucky, 
eastern Arkansas, and Missouri. The PAD-US is an inventory of property boundaries with legal protected status 
intended to conserve biological diversity, recreation, and cultural uses. We defined spatial sanctuaries as areas 
managed for waterfowl and prohibited human recreation and disturbance before, during, and after the waterfowl 
hunting season. Following consultation with local biologists, we modified NWR and state-managed boundaries 
from PAD-US to exclude areas that allowed human recreation or other access, thereby ensuring our database 
only included waterfowl spatial  sanctuaries43. We also eliminated erroneous features from the  analysis18 (e.g., boat 
docks, office buildings). Importantly, if sanctuaries were geographically separated—despite being considered one 
contiguous sanctuary—we separated them into two or more sanctuary nodes because mallards theoretically per-
ceived these boundaries separately given the huntable landscape matrix between nodes (i.e., 1.6 and 2.1 km apart, 
respectively). Our resulting sanctuary network included five NWR nodes (three in Tennessee, one in Tennessee 
and Kentucky, and one in Arkansas) and eight state-owned waterfowl sanctuary nodes in Tennessee (n = 13).

For all federal and state-owned waterfowl sanctuaries, we calculated area  (km2) and distance matrices (km) 
to and from each sanctuary using the sf package in R version 4.2.2146,147. Sanctuary area ranged from 1.3–45.7 
 km2 ( x = 9.7 ± 11.8  km2; n = 13) and minimum distances between sanctuaries ranged from 1.3–120.0 km ( x 
= 46.9 ± 25.8; n = 78). We used sanctuary area and distances as covariates to test predictions that movement 
transitions (i.e., sanctuary departure and arrival) varied depending on the size of the emigrated sanctuary (e.g., 
source populations), the size of the sanctuary the individual relocated to, and the distance between  them7. We 
also included age and sex of each individual as covariates to test predictions that males relocated more in search 
of limited females and pair bonding  opportunities148,149 and juveniles relocated more because they were naïve to 
hunting risk implied by greater harvest  rates150,151.

Sanctuary transition multistate capture‑recapture model
We developed multistate mark-recapture models in a Bayesian framework to estimate movement transition prob-
abilities among  sanctuaries152–154 (File S1, Table S1). We built daily encounter histories for each individual from 1 
November through 29 February from 2019–2023 where we assigned categorical “states” (i.e., sanctuary node) for 
each mallard on each day during winter. We treated individuals with two or more winters as separate sampling 
units with separate encounter histories because individuals with > 1 year of data could begin their capture history 
at different sanctuary nodes (states) in winters t +  1155. The encounter history for each individual began with their 
first GPS location on a sanctuary node, defined for each day between 1000 and 1900, which represented a time 
when most individuals would be within sanctuary  boundaries94–96. Additionally, we filtered the first 4 days of GPS 
locations following deployment to allow ducks to acclimate to GPS transmitters and  harnesses94. Individuals were 
assigned 1 of 14 possible states which included 13 sanctuary nodes and an unobserved state (File S1, Table S3, 
Table S4). Individuals with unobserved states missed GPS fixes or were not within sanctuary boundaries during 
the 1000–1900 observation window. Although not all sanctuary node transition combinations were reflected in 
the data, we did not restrict analyses to only observed transitions because all were biologically possible based on 
mallard movement and dispersal  ability155 (File S1, Table S3).

We estimated daily movement transition probabilities ( ψ ) from sanctuary node ( i ) to every other sanctuary 
( j ), including the probability of staying on the current sanctuary, for a total of 169 transition probabilities ( ψi,j ), 
including “no transition”. Specifically, we fitted generalized linear models with a multinomial link function to 
estimate movement probabilities on the logit scale for transitions from one sanctuary node ( s ) to any other node 
( j ) for individual ( i ) relative to sanctuary sizes, distances, and age-sex demographics (1–13 possible transitions): 
logit.ψsji = β0 + βdist × Distancesj + βsize.s × Sizes + βsize.j × Sizej + βsex × Sexi + βage × Agei . We calculated 
the probability of staying on the current sanctuary node as 1−

∑12
j=1ψs,j,i

154. In other words, the probability of 
transitioning to another sanctuary was estimated conditionally relative to distance between sanctuaries (km), 
sizes of the emigration and immigration sanctuaries  (km2), and age and sex covariates. Conversely, the probability 
of staying (i.e., not transitioning) was calculated to ensure probabilities summed to  1154. We estimated move-
ment transition probabilities with one intercept (i.e., transitions from one sanctuary to any other sanctuary), as 
opposed to 13 sanctuary-specific  intercepts154,156.

We fitted the multistate model using Markov Chain Monte Carlo (MCMC) simulation with the jagsUI pack-
age in  R147,157,158. We specified vague priors for all model  parameters159. We used a parallel processing framework 
for computational efficiency which ran 10 independent Markov chains for 100 iterations each, a 20 iteration 
burn-in, and a thinning rate of  3160. We proceeded with 100 iterations until models converged or until a priori 
maximum of 1000 iterations was reached. We monitored convergence based on visual inspection of the chains 
(Fig. 3) and the Gelman-Rubin statistic which converged R̂ ≤ 1.01161. We reported coefficients on a logit scale 
and odds ratios with 90% credible intervals (CRI)162. We illustrated predicted relationships with 68%, 90%, and 
95% CRI bands  graphically163.

Modeling sanctuary use and survival
We fitted a separate generalized linear model with a truncated Poisson error distribution and log-link function 
in a maximum likelihood framework using glmmTMB in R to estimate the effect of time spent in the study 
region (1–120 days), winter month (November, December, January, and February), and number of winters (1 
winter = capture and > 1 winter = return) relative to the number of sanctuaries  used147,164. Intuitively, we predicted 

https://arriveguidelines.org
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the longer an individual remained within the study region, the greater number of sanctuaries used. We specified 
November as the categorical indicator and predicted individuals would use more sanctuaries during November 
and February and fewer sanctuaries during December and January to minimize risk of hunting mortality (i.e., 
less movement during hunting season). Importantly, we included the number of winters an individual was moni-
tored (i.e., 1 or > 1) to ascertain possible confounding sanctuary use behavior due to marker effects. Specifically, 
we assumed that an individual that returned to the region and thus survived the previous winter–fall migration 
was reasonably unaffected by their transmitter; therefore, no clear statistical difference of sanctuary use between 
capture-year wintering ducks compared to ducks that returned to the study region suggests no behavioral biases 
of sanctuary use as a result of external transmitters. We calculated Pearson’s correlation (r) between pairs of 
continuous covariates but none were correlated (|r|≤ 0.6)165. We used the DHARMa package in R to ensure 
model assumptions were not  violoted166 (Fig. S4). We provided estimated coefficients and considered covariates 
statistically significant if 90% confidence intervals did not bound  zero167,168.

We identified 45 individuals (11%) that never used sanctuary following capture (Supplementary Context, 
Methods, Results 2). We assigned a binary independent variable of sanctuary use to each individual where “0” 
denoted individuals that never used a sanctuary node following capture and “1” was the opposite. We fitted 
a Cox proportional hazard model in the survival package in R to estimate known-fate Kaplan-Meir survival 
curves and hazard  ratios169,170. We right-censored individuals that did not die by the end of winter (120-days 
from November–February) or stopped transmitting, assuming unbiased  censoring171,172. We tested whether 
overwintering survival was different between sanctuary and non-sanctuary mallards using a log-rank χ2 test at 
an a priori α = 0.05173. We reported a seasonal baseline hazard ratio, survival probabilities at 30 and 60 days and 
associated variance estimates for each GPS-marked cohort. Additional details are provided in Supplementary 
Context, Methods, Results 2.

Animal ethics
Duck capture and handling procedures were in accordance with Tennessee Technological University’s Institu-
tional Animal Care and Use Committee protocol #19-20-002 and authorized under Federal Banding Permit 
#05796.

Data availability
Relevant data and code are included in Supporting Information and are available in GitHub and published 
through Zenodo at https:// doi. org/ 10. 5281/ zenodo. 10150 699.
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