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Abstract
Migratory waterfowl (i.e., ducks, geese, and swans)
management relies on landscape bioenergetic models
to inform on-the-ground habitat conditions and conser-
vation practices. Therefore, conservation planners rely
on accurate predictions of wetland habitats for water-
fowl at regional scales. Unharvested flooded corn is a
popular management tool on public and private lands
that greatly increases landscape-level energy compared
to other wetlands; thus, landscape bioenergetic mod-
els are particularly sensitive to these habitat features.
Despite their importance to conservation planning and
implementation, the abundance and distribution of un-
harvested flooded corn fields across North America is
unknown. Furthermore, training data is difficult to col-
lect and accurate predictions are challenging given their
unique attributes and discreteness at landscape-level
lens. Advances in multispectral imagery and deep learn-
ing algorithms may enable continuous and autonomous
detection of these habitat features. Therefore, we con-
ducted modeling experiments using training data of un-
harvested flooded corn fields in West Tennessee and
multispectral imagery collected from Sentinel-2 satel-
lite missions. We performed several experiments using
individual band combination composites and/or vegeta-
tion indices to identify optimal bands using MRUNET
architectures. We subsequently used 3 ensemble mod-
els of important individual networks. We found the use
of multispectral bands was necessary and although the
CIR composite and OSAVI index improved precision,
the 12-band composite increased recall, the metric we
were most interested in. Moreover, all ensembles exhib-
ited poor performance. Here, we present results of our
initial modeling experiments and suggest future model-
ing exercises including temporal image and vegetation
index stacking using multi-modal and/or recurrent neu-
ral network architectures.

Introduction
Federal management for migratory waterfowl (i.e., ducks,
geese, and swans) during autumn, winter, and spring (here-
after, non-breeding periods) hierarchically step-down con-
tinental population objectives to regional geographies and
subsequently implement bioenergetic models that translate
species-specific abundance to needed landscape energy and
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foraging habitat goals (U.S. Department of Interior 1986;
Williams et al. 2014). Cultivation of high-energy croplands
flooded during nonbreeding seasons for waterfowl allow
state and federal biologists to efficiently meet target habitat
objectives. Flooded unharvested corn fields are a particularly
popular management tool on public and private lands that
provide energy-dense waterfowl food resources (Highway
2022). Bioenergetic models are extremely sensitive to these
habitat features. Despite the importance of these landscape
habitat features to conservation planning, the abundance and
distribution of flooded croplands are unknown.

Virtually no data on unharvested flooded corn field
acreages exists because (1) they are difficult to identify
from satellite imagery; (2) no reporting requirements ex-
ist; and (3), field data is costly to collect. However, novel
geospatial software and technologies have enabled high-
resolution spatiotemporal predictions of landcover, surface
water, land-use change and other phenomenon of global im-
portance (Brown et al. 2022; Owusu et al. 2022). For exam-
ple, Sentinel-2 satellite missions continuously collect multi-
spectral (12 channels) satellite imagery with a 5 day revisita-
tion frequency worldwide at 10 m granularity for visible and
and near infrared (NIR) light (Gorelick et al. 2017). Using
Google Earth Engine (GEE), it is possible to quickly and
freely retrieve satellite data continuously from around the
world. Ideally, this data should enable continuous updates to
flooded corn acreages for conservation planning and imple-
mentation purposes. However, digitizing these features on
satellite imagery is expensive and time consuming.

Semantic image segmentation is an algorithmic approach
to labelling an image’s pixels (Liu, Deng, and Yang 2019).
Since the advent of Fully Convolutional Networks (FCN)
(Long, Shelhamer, and Darrell 2015), great strides have been
made in Semantic Image Segmentation. For example, re-
search in the medical field developed network architectures
like U-Net (Ronneberger, Fischer, and Brox 2015) which has
performed segmentation tasks with high levels of precision
despite relatively low training data counts. U-Net has sub-
sequently become popular for semantic segmentation tasks
in other domains such as remote sensing (Chen et al. 2021;
Shamsolmoali et al. 2019; Zhang, Liu, and Wang 2018).

Our overall goal is to create a deep learning model that
can accurately assess the land cover of flooded unharvested
corn. We plan to accomplish this by leveraging available



satellite imagery and deep learning algorithms to perform
semantic segmentation. The model can then be used to cre-
ate user-friendly software that enables continual and accu-
rate predictions of unharvested flooded corn fields for con-
servation planning and implementation. Herein, we con-
ducted modeling experiments to better understand salient
features of different available datasets when detecting un-
harvested flooded corn. We also establish a baseline against
which to compare as we further develop our model.

Dataset

Figure 1: Our entire area of study in West Tennessee.

Our dataset consists of satellite imagery and a correspond-
ing mask that shows where unharvested flooded corn is lo-
cated. Our area of study is located in West Tennessee along
the Mississippi river and contributing watersheds as shown
in Figure 1. We gathered Sentinel 2 imagery from January
2022 with 10% minimal cloud coverage for our area using
GEE (Gorelick et al. 2017). The data collected included all
12 spectral bands ranging between 442.3 nm to 2202.4 nm.
We gathered 185 field locations from private and publicly
locations by tracing the boundary with a Garmin eTrex 10
handheld GPS unit (Garmin International, Olathe, KS, USA)
(Highway 2022). Individual patches of unharvested flooded
corn are in close proximities; to prevent data leakage while
training, we grouped patches within 0.5 km radius from each
other resulting in 106 unique locations from which to sam-
ple. Next, we projected satellite images and field shapes to
the same coordinate reference system to ensure geographi-
cal alignment. In addition to the 12-channel multi-spectral
images, we also calculated the Optimized Soil Adjustment
Vegetation Index, OSAVI. This index takes the multispec-
tral bands and applies a mathematical transformation to bet-
ter highlight plant life and vitality. We selected the OSAVI
because it was designed to mute soil brightness (or in our
case water reflectance) (Fern et al. 2018). The formula for

the OSAVI index is as follows:

OSAV I = (1 + 0.16)
NIR−Red

NIR+RED + 0.16

Where NIR is the Sentinel 2 band for Near Infrared light,
and Red is the Sentinel band for red light. We expected these
infrared bands and indices to improve detection and segmen-
tation of unharvested corn and water (Figure 2). Addition-
ally, we used two subsets of the full 12-channel images. The
first uses the red, green, and blue channels (RGB), and the
second uses the NIR, red, and green channels (CIR).

(a) Visualization of OSAVI index with fields in pink.

(b) OSAVI index visualization without corn shapes.

Figure 2: Visualizations of the OSAVI index.

We generated labels for training data by converting GPS
corn shapes to a label mask for the study area using Rasterio
in Python(Gillies and others 2013). Each pixel is labeled 0,
background, or 1, unharvested flooded corn Figure 3.

Often in remote sensing, segmentation tasks for specific
landscape features encounter extreme class imbalances. Fig-
ure 4 shows the label mask for our entire area of study. In
Figure 4 it is apparent that a small area of our study region
as a whole has been labeled. Secondly, while in Figure 3 the
foreground class is relatively common, more often than not,
the foreground class is scarce. Figure 5 shows the massive
class imbalance present in the dataset.



Figure 3: Example label mask. Background class is in pur-
ple, unharvested flooded corn is shown in yellow. Each pixel
is 10x10 meters.

Figure 4: Label mask for our study region. Foreground class
is in yellow with a 10x10 meter pixel resolution

To deal with the small sample size challenges (Figure 4),
we applied image augmentation to artificially increase the
number of available training samples. We found that this
performed better than no augmentations, due to mitigation
of over fitting. Whenever an image is loaded during train-
ing, we generated a centroid for each field. A random pixel
is then selected from a 64x64 pixel area around the cen-
troid and used to extract a 128x128 pixel image. Next, the
image is flipped about the x and/or y axis and rotated in a
range of ± 1-45 degrees. Finally, the image is extracted to be
128x128 pixels. With these augmentations (642 translations
* 4 flips * 90 rotations) we increased the available sample
space by a factor of 1 million. When training on a batch size
of 20 for 5 steps across 200 epochs, we used roughly 20,000
of the images.

Model
Architecture
We implemented our model in Python 3.7 using Tensorflow
2.0 (Abadi et al. 2015). For our model we chose the MultiRe-
sUNet (MRUNet) architecture, which builds upon U-Net by

Figure 5: Example label mask with massive class imbalance.
Background class is in purple, unharvested flooded corn is
shown in yellow. Each pixel is 10x10 meters.

expanding the receptive field of the network and correcting
for possible semantic inconsistencies (Ibtehaz and Rahman
2020). U-Net is a fully convolutional network for image seg-
mentation that has seen great success in both the medical and
remote sensing fields (Ronneberger, Fischer, and Brox 2015;
Chen et al. 2021; Shamsolmoali et al. 2019; Zhang, Liu, and
Wang 2018). U-Net has three main features, the encoder, the
decoder, and the skip connections. The encoder has multi-
ple tiers of two convolutional layers with kernel size 3x3
followed by a max pooling layer with a pooling window
of size 2x2. The convolutional layers generate a specified
number of filters that represent some feature of their input.
Next, the max pooling layer downsamples the generated fil-
ters. At each tier of the network, the filter dimensionality
decreases, and the number of filters generated is doubled.
Then, at the lowest tier, the filters are passed to the decoder
where this operation is mirrored. Instead of max pooling,
the filters are transposed up a tier before the two convolu-
tional layers. Mirroring the encoder, as the dimensionality
of the filters increases, the filters decrease. Many semantic
segmentation networks follow this design, with the intuition
that, over time, deeper features are extracted in order to iden-
tify objects (Liu, Deng, and Yang 2019). The main contribu-
tion of U-Net was introducing the skip connections from the
encoder to the decoder section. At each matching tier, the
output of the encoder section is passed to the decoder sec-
tion. The max pooling layer takes features for a section of
the image and chooses the max value. So, it is possible that
some nuance of the image could be lost. By implementing
these skip connections, spatial features that may have been
lost throughout the pooling in the network are preserved.

MRUNet extends upon U-Net based on a few insights.
First, objects are rarely of the same scale, and it is impor-
tant for the network to be able to handle objects of differ-
ent sizes. MRUNet handles this by introducing the MultiRes
block to the network (Ibtehaz and Rahman 2020). Instead
of doing two convolutional layers, it has a series of three
3x3 convolutions, with each set of output filters appended
to the output. This approximates a 3x3, 5x5, and 7x7 con-
volution in parallel. The three layers are then added to a
residual filter generated from a 1x1 convolution. This broad-
ens the model’s receptive field, or the spatial information it
can process at one time. The MultiRes block therefore pro-



vides additional information that a 3x3 kernel may not in-
corporate. The second insight is a bridge for the “semantic
gap” between the encoder and decoder. As the features get
deeper and deeper into the network, they are continuously
processed by the convolutional layers. When merging the fil-
ters from the encoder and decoder there is a different level of
processing and therefore incompatible data. MRUNet builds
on top of the skip connections by passing the skip connec-
tion through a series of 3x3 convolutions added with a resid-
ual 1x1 convolution for each tier. As a result, the filters in
the skip connection are processed in a way that matches the
corresponding decoder section and closes gap between the
encoder and decoder.

We also implemented unified focal loss in order to mit-
igate class imbalances (Yeung et al. 2022). Unified focal
loss works by combining two other loss functions (focal
loss and Tversky focal loss) into a single metric. Both func-
tions assign a weight to individual classes, in our case, the
background class and the foreground class. They are also
weighted by how well the model performed for a given train-
ing example. If the model produces a good prediction, it
is not carried into the backpropagation as heavily as poor
predictions. As a result of using focal loss and focal Tver-
sky loss, the model maximizes both a good distribution of
predictions and similarity between the prediction and the
ground truth. Both the focal and Tversky focal loss functions
are parameterized by the variables α and γ which control the
class weightings (foreground and background) and difficulty
weight respectively. Unified focal loss combines them into a
single α and γ for simplicity.

Experiments
For all experiments we set our loss function parameters to
α=0.7, γ=0.5. The parameter α was set to 0.7 to encourage
the model to favor the foreground class and γ was set to 0.5
so that difficult training corn field examples were more heav-
ily weighted. This setting for γ is suggested to be optimal for
the function (Yeung et al. 2022). We performed 5-fold cross
validation, generating stratified training and validation sets
of size 85 and 21 respectively. During training, the 85 train-
ing images are then augmented as previously described. For
each fold we trained for 150 epochs with an initial learning
rate of 0.0005 and the Adam optimizer available in Tensor-
flow (Abadi et al. 2015).

For these experiments we tested the following 3 ques-
tions: (1) Is there a subset of channels (e.g., color-infrared)
from the full 12 channel multi-spectral images that performs
better than the full 12?; (2) Does the OSAVI agricultural in-
dex perform better than the full 12?; and (3) Does an ensem-
ble across all inputs improve performance?

We ran individual models using the RGB bands, OSAVI,
CIR, and 12 channels, as well as an ensemble using the OS-
AVI, CIR, and 12 channel models. For our experiments, the
RGB and 12 channel models served as baselines. We col-
lected and calculated the confusion matrix for each indi-
vidual model across the 5 folds from cross validation. We
then calculated the metrics described below. Last, we com-
bined the CIR, OSAVI, and 12 band composite into ensem-
ble models. Ensembles often improve performance by tak-

ing information from each model (Ma et al. 2021). We per-
formed three methods of ensembling. (1) We averaged the
percentage across all the models that each pixel is part of the
foreground class; (2) We trained more convolutional layers
on each model’s prediction; and (3) We trained a decision
tree to predict the class using the output of the three mod-
els. We also attempted to increase the recall of our models
by increasing α in unified focal loss (Ma et al. 2021). We
experimented with values of 0.8 and 0.9 for α.

Metrics
Performance metrics used were the Intersection over Union
(IoU), precision, recall and F1 score. The four equations are

IoU =
TP

TP + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
IoU is a popular metric in image segmentation (Minaee et al.
2021). It measures how similar two label masks are by com-
puting the area of their intersection, and dividing by their
union. This is a better metric than accuracy due to our class
imbalance, which can still have high values, even if no fore-
ground pixels were guessed correctly. The confusion matrix
was generated for all five folds and then summed. The re-
sulting metrics were taken from the summed confusion ma-
trices.

Results

OSAVI
Model Precision Recall IoU F1
RGB 0.17 0.03 0.03 0.05

OSAVI 0.23 0.22 0.13 0.22
CIR 0.25 0.18 0.12 0.21

12-channel 0.17 0.32 0.13 0.23
Ensemble 0.29 0.08 0.07 0.12

Table 1: Metrics for each model across 5 folds.

Table 1 shows the metrics of our models. RGB has the
lowest scores in Recall, IoU and F1, 0.03, 0.03, and 0.05 re-
spectively. RGB does however, retain a precision score simi-
lar to the full 12 band model, 0.17. The OSAVI, CIR, and 12
channel models share similar IoU and F1 scores, however,
when compared to the OSAVI index and CIR composite, the
12-band composite performed 0.06 percentage points lower
in precision than OSAVI, but 0.10 points higher than OSAVI
in recall.

For the ensembled model we listed the model that used
the average percentage chance without the increased recall
in Table 1. Our other ensemble models did not perform as
well, scoring < .05 and .10 for IoU and F1 respectively.
The ensemble had the highest precision, 0.29, but performed
poorly in every other metric.



Discussion

(a) Visualization of CIR composite with fields in orange.

(b) CIR composite visualization without corn shapes.

Figure 6: Visualizations of the CIR composite.

One key observation is that the RGB bands alone are un-
able to detect the important features of flooded corn, namely
water and dead corn stalks. Conversely, any imagery con-
taining infrared light performed better. Figures 2 and 6 show
water and vegetation strongly because both reflect visible
and near infrared light (Lillesaeter 1982). Comparing 2a to
2b, the flooded areas are all green, open water are in light
blue hues, and non-flooded and apparently harvested agri-
culture or bare dirt appear brown. However, many, but not
all green pixels are flooded corn. Most shapes in Figure 2a
are surrounded by light blue water. Therefore, identifying
green areas alone in the OSAVI index may be insufficient to
identify flooded corn fields. Instead, a combination or hier-
archical approach of first identifying green and then blue re-
flectance in the OSAVI index might improve performances.
Likewise, in the CIR composite, the flooded areas are blue,
and the surrounding dormant vegetation is pink. As men-
tioned, the infrared bands detected water reflectance and de-
lineated water from dry ground during January exceptionally
well. However, our experiments could not reliably identify
the standing corn stalks within the water. In some cases, the
models appeared to identify inundated corn by searching for
dark green and orange pixels; however, in other cases, an en-

tire flooded area was dark green, but the entire area was not
necessarily unharvested flooded corn. These landscape fea-
ture discrepancies of vegetation within water was clearly a
challenge for individual segmentation models to overcome.

It appears that there is no distinct advantage that distin-
guishes the OSAVI Index and CIR composite. The reason
for this may be that while they are different in their con-
struction, their components are similar. Each uses the red
and NIR bands, and the infrared bands appear to be the most
important for finding water at least. So the differences be-
tween the two may not be enough to provide any substantial
benefit over the other.

In a similar vein, our ensemble had high precision, but
failed to identify and segment as many fields as the single
model, which was the primary objective of this approach. As
mentioned above, perhaps the similarity between the OSAVI
and CIR failed to give the ensemble enough information to
pick out important aspects of unharvested flooded corn. An-
other possible explanation is the single models do not per-
form well enough on their own for the ensemble itself to per-
form well. As a result, the ensemble doesn’t have enough to
learn off of. This would explain why simply averaging the
percentage chance for each pixel outperformed more com-
plicated neural network or decision tree methods.

Conclusion and Future Work
In this work, we compared the performance of satellite
bands, their subsets, a vegetation index used for agriculture,
and combinations thereof. We found that the use of multi-
spectral bands and agricultural indices are vital to identify-
ing water and to some degree, vegetation, but ultimately in-
sufficient to segment flooded agriculture. While a composite
of all 12 bands can perform well, using a simpler form of the
data, such as a subset or agricultural index, like the CIR and
OSAVI, improves precision. However, the 12 channel model
did perform better in recall, the performance metric we are
most interested in given class imbalances, indicating addi-
tional informative but untested channels in our experiments.

Nevertheless, we demonstrate initial possibilities to seg-
ment unharvested flooded corn but considerable improve-
ments are necessary. For example, one unreported exper-
iment used slope and annual inundation frequency as in-
puts, assuming corn fields are not planted on steep inclines
and that inundation frequency would aid in identifying ar-
eas that were partially flooded during a given year. These
inputs proved to not be useful in prediction, however, slope
and inundation frequency may be helpful in a pre-processing
step thereby removing extraneous locations. By reducing the
overall search space, we can reduce the time spent search-
ing large areas and ensure the final tool is as efficient as
possible. Future improvements may also include additional
channel transformations and temporal image stacking (Qiao
et al. 2021). For example, the OSAVI appears to delineate
water edges and green features (often corn) well. A normal-
ized difference moisture index (NDMI) has been shown to
be useful for identifying water stress in crops such as corn
and sunflowers (Mimić et al. 2022), which would be the case
for flooded corn in January. Last, the features of interest
change from October-January; thus, multi-temporal image



stacking in addition to vegetation index stacking may prove
useful in the future and could be accomplished using multi-
modal or recurrent networks (Qiao et al. 2021). Although
of little consequence here, expanding the size of these train-
ing datasets will be important for conservation planners to
consider. One such endeavor is ongoing where an aerial ob-
server has been taking GPS locations of flooded unharvested
corn fields across the Southeast (Hagy H and Others 2022).
Another option may be to utilize semi-supervised learning
with partially labeled data to increase the number of training
images.

Limitations
We acknowledge there are a some limitations in what we
have covered in this work. Our dataset is relatively small for
the image processing space, and we intend to address that by
adding more labels and utilizing semi-supervised learning
techniques. We are also considering different datasets and
models to use for transfer learning. We also acknowledge
that there may be better models other than those based on
U-Net that we have yet to try.
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